International Journal of Management, IT & Engineering

Vol. 9 Issue 7, July 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's

Directories of Publishing Opportunities, U.S.A

ON A CLASS OF STARLIKE FUNCTIONS OF COMPLEX ORDER USING q-DIFFERENTIAL OPERATOR

K. Ramachandran*

K. Srinivasan**

		Abstract
		A subclass of starlike functions of complex order is
		defined using q -differential operator which unifies well-
		known Dziok-Srivastava operator and Sălăgean
Keywords:		differential operator. Coefficient inequalities, sufficient
q-calculus;		condition and an interesting subordination result are
univalent functions;		obtained. Finally, we give relevant connections of our
starlike functions;		main results with former results obtained by various other
convex	function,	authors.
subordination	ı;	
Dziok-Srivas	tava operator.	

^{*}Department of Mathematics, SRM University, Ramapuram, Chennai-601206, Tamilnadu, India. bharaniram22@gmail.com

^{**}Department of Mathematics, Presidency College, Chennai-600 005, Tamilnadu, India.

1. Introduction

We let \mathcal{A} to denote the class of all analytic function of the form

$$f(z) = z + \sum_{n=2}^{\infty} c_n z^n$$
(1.1)

in the open unit disc $\mathcal{U} = \{ z : z \in \mathbb{C}; |z| < 1 \}$. Also we let \mathcal{S} to denote the subclass of \mathcal{A} which are analytic and univalent in \mathcal{U} . We denote by \mathcal{S}^* , \mathcal{C} , \mathcal{K} and \mathcal{C}^* the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike, convex, close-to-convex and quasiconvex in \mathcal{U} . For detailed study on the development of various studies on univalent function theory, we refer to [5,8].

Let f(z) and g(z) be analytic in \mathcal{U} . Then we say that the function f(z) is subordinate to g(z) in \mathcal{U} , if there exists an analytic function w(z) in \mathcal{U} such that |w(z)| < |z| and f(z) = g(w(z)), denoted by f(z) < g(z). If g(z) is univalent in \mathcal{U} , then the subordination is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

In 1908, Jackson [9] reintroduced the Euler-Jackson q-difference operator

$$D_q f(z) = \frac{f(z) - f(qz)}{z(1-q)} (z \in \mathcal{U} - \{0\}; \ q \in \mathbb{C} \setminus \{0\}),$$

where \mathbb{C} denotes the set of complex numbers. The limit as q approaches 1^- is the derivative $\lim_{a \to 1} D_q f(z) = f'(z)$, provided the derivative exists. For example,

$$D_q(z^{\alpha}) = \frac{z^{\alpha} - (qz)^{\alpha}}{z(1-q)} = [\alpha]_q z^{\alpha-1}, \alpha \in \mathbb{C},$$

where

$$[n]_q = \sum_{k=1}^n q^{k-1}, [0]_q = 0, \qquad q \in \mathbb{C}.$$

If f(z) is of the form (1.1), a simple computation yields

$$D_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}, (z \in \mathcal{U}),$$
 (1.2)

and $D_q f(0) = f'(0)$, where $q \in (0,1)$. The application of q –calculus was initiated by Jackson [9, 10]. He was the first to develop the q –integral and q –derivative in a systematic way. Later,

geometrical interpretation of the q -analysis has been recognized through studies on quantum groups. Simply, the quantum calculus is ordinary classical calculus without the notion of limits. It defines q -calculus and h -calculus. Here h ostensibly stands for Planck's constant, while q stands for quantum. For study on the development of q-claculus in slow motion, we refer to [6]. And a comprehensive study on the applications of q -calculus in the operator theory may be found in [2].

The q-hypergeometric series was developed by Heine as a generalization of the hypergeometric series

$${}_{2}F_{1}[a,b;c|q,z] = \sum_{n=0}^{\infty} \frac{(a;q)_{n}(b;q)_{n}}{(q;q)_{n}(c;q)_{n}} z^{n}$$
(1.3)

where the q-shifted factorial is given by

$$(a;q)_n = \begin{cases} 1, & n = 0\\ (1-a)(1-aq)\dots(1-aq^{n-1}), & n = 1,2,3,\dots \end{cases}$$

and it is assumed that $c \neq q^{-m}$ for m = 0, 1, 2, ... Generalizing the Heine's series, we define $r\phi_s$ the basic hypergeometric series by

$${}_{r}\varphi_{s} = \sum_{n=0}^{\infty} \frac{(a_{1};q)_{n}(a_{2};q)_{n}\dots(a_{r};q)_{n}}{(b_{1};q)_{n}(b_{2};q)_{n}\dots(b_{s};q)_{n}(q;q)_{n}} \left[(-1)^{n}q^{\binom{n}{2}} \right]^{1+s-r} z^{n}$$
(1.4)

with $\binom{n}{2} = \frac{n(n-1)}{2}$, where $q \neq 0$ when r > s+1. In (1.3) and (1.4), it is assumed that the parameters $b_1, b_2, ..., b_s$ are such that the denominators factors in the terms of the series are never zero.

For complex parameters $a_1, ..., a_r$ and $b_1, ..., b_s(\beta_j \in \mathbb{C} \setminus \mathbb{Z}_0^-; \mathbb{Z}_0^- = 0, -1, -2, ...; j = 1, ..., s)$, we define the generalized q-hypergeometric function ${}_r\Psi_s(a_1, ..., a_r; b_1, ..., b_s; q, z)$ by

$${}_{r}\Psi_{s}(a_{1}, a_{2}, ..., a_{q}; b_{1}, b_{2}, ..., b_{s}; q, z) = \sum_{n=0}^{\infty} \frac{(a_{1}; q)_{n} (a_{2}; q)_{n} ... (a_{r}; q)_{n}}{(q; q)_{n} (b_{1}; q)_{n} ... (b_{s}; q)_{n}} z^{n} (1.5)$$

$$(r = s + 1; r, s \in \mathcal{N}_{0} = \mathcal{N} \cup \{0\}; z \in \mathcal{U}),$$

where \mathcal{N} denotes the set of positive integers. By using the ratio test, we should note that, if |q| < 1, the series (1.5) converges absolutely for |z| < 1 and r = s + 1. For more mathematical background of these functions, one may refer to [7].

Corresponding to a function $\mathcal{G}_{r,s}(a_i,b_j;\ q,z)(i=1,2,...,r;\ j=1,2,...,s)$ defined by

$$G_{r,s}(a_i, b_j; q, z):$$

$$= z \quad {}_r\Psi_s(a_1, a_2, ..., a_r; b_1, b_2, ..., b_s; q, z)$$
(1.6)

We now define the following operator $\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f:\mathcal{U}\to\mathcal{U}$ by

$$\mathcal{J}_{\lambda}^{0}(a_{1},b_{1}; q,z)f(z) = f(z) * \mathcal{G}_{r,s}(a_{i},b_{i}; q,z)$$

 $\mathcal{J}^1_{\lambda}(a_1,b_1;q,z)f(z)$

$$= (1 - \lambda) \left(f(z) * \mathcal{G}_{r,s} \left(a_i, b_j; q, z \right) \right) + \lambda z D_q \left(f(z) * \mathcal{G}_{r,s} \left(a_i, b_j; q, z \right) \right)$$
(1.7)

 $\mathcal{J}_{\lambda}^{m}(a_1,b_1;q,z)f(z)$

$$= \mathcal{J}_{\lambda}^{1} \left(\mathcal{J}_{\lambda}^{m-1}(a_1, b_1; q, z) f(z) \right) \tag{1.8}$$

If $f \in \mathcal{A}_1$, then from (1.7) and (1.8) we may easily deduce that

 $\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f$

$$= z + \sum_{n=2}^{\infty} \left[1 - \lambda + [n]_q \lambda \right]^m Y_n c_n z^n$$

$$(m \in N_0 = N \cup \{0\} \text{ and } \lambda \ge 0).$$

$$(1.9)$$

where

$$Y_n = \frac{(a_1; q)_{n-1}(a_2; q)_{n-1} \dots (a_r; q)_{n-1}}{(q; q)_{n-1}(b_1; q)_{n-1} \dots (b_s; q)_{n-1}}, (|q| < 1).$$

Remark 1.1 We note that the linear operator (1.9) is q-analogue of the operator defined by Selvaraj and Karthikeyan [12]. Here we list some special cases of the operator $\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f$.

1. For a choice of the parameter m=0, the operator $\mathcal{J}_{\lambda}^{0}(\alpha_{1},\beta_{1})f(z)$ reduces to the q-analogue of Dziok-Srivastava operator [4].

2. For
$$a_i = q^{\alpha_i}, b_j = q^{\beta_j}, \alpha_i, \beta_j \in \mathbb{C}, \beta_j \neq \emptyset$$

0, -1, -2, ..., (i = 1, ..., r, j = 1, ..., s) and $q \to 1^-$, we get the operator defined by Selvaraj and Karthikeyan [12].

- 3. For m = 0, $a_i = q^{\alpha_i}$, $b_j = q^{\beta_j}$, α_i , $\beta_j \in \mathbb{C}$, $\beta_j \neq 0, -1, -2, ...$, (i = 1, ..., r, j = 1, ..., s) and $q \to 1^-$, we get the well-known and famous Dziok-Srivastava operator.
- 4. For r = 2, s = 1; $a_1 = b_1$, $a_2 = q$ and $\lambda = 1$, we get the *q*-analogue of the well knownSălăgean operator (see [11]).

Also many (well known and new) integral and differential operators can be obtained by specializing the parameters.

Using the operator $\mathcal{J}_{\lambda}^{m}(a_1,b_1;q,z)f$, we define $\mathcal{T}_{\lambda}^{m}(b;a_1,b_1;q;A,B)$ to be the class of functions $f \in \mathcal{A}$ satisfying the inequality

$$1 + \frac{1}{b} \left(\frac{\mathcal{J}_{\lambda}^{m+1}(a_1, b_1; q, z)f}{\mathcal{J}_{\lambda}^{m}(a_1, b_1; q, z)f} - 1 \right) < \frac{1 + Az}{1 + Bz}, \quad z \in \mathcal{U}, \tag{1.10}$$

where $b \in \mathbb{C}\setminus\{0\}$, A and B are arbitrary fixed numbers, $-1 \le B < A \le 1$, $m \in \mathbb{N}_0$.

We note that by specializing $m, \lambda, r, s, a_1, b_1, A, B$ in the function class $T_{\lambda}^m(b; a_1, b_1; q; A, B)$, we obtain several well-known and new subclasses of analytic functions. Here we list a few of them:

1. If we let $\lambda = 1, r = 2, s = 1$, $a_1 = b_1 a_2 = q$ and $q \to 1^-$, then the class $\mathcal{T}_{\lambda}^m(b; a_1, b_1; q; A, B)$ reduces to the well- known class

$$\mathcal{H}^m(b;A,B) := \{ f : f \in \mathcal{A}, 1 + \frac{1}{b} \left(\frac{\mathcal{D}^{m+1}f(z)}{\mathcal{D}^m f(z)} - 1 \right) < \frac{1 + Az}{1 + Bz}, \qquad z \in \mathcal{U} \}$$

where $\mathcal{D}^m f$ is the well- known Sălăgean operator. The class $\mathcal{H}^m(\delta; A, B)$ was introduced and studied by Attiya in [3].

2. For a choice of the parameter $\lambda = 1$, r = 2, s = 1, $a_1 = b_1$, $a_2 = q$, $q \to 1^-$, A = 1 and B = -M, the class $\mathcal{T}_{\lambda}^m(b; a_1, b_1; q; A, B)$ reduces to the class

$$\mathcal{H}^{m}(b; M) := \{ f : f \in \mathcal{A}, \left| \frac{b - 1 + \frac{\mathcal{D}^{m+1}f(z)}{\mathcal{D}^{m}f(z)}}{b} - M \right| < M, z \in \mathcal{U} \}$$

where $M > \frac{1}{2}$. The class $\mathcal{H}^m(b; M)$ was introduced and studied by Aouf, Darwish and Attiya in [1].

Apart from the above, several other well known and new classes of analytic functions can be obtained by specializing the parameters involved in the class $\mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$.

2. Coefficient estimates

Theorem 2.1 Let the function f(z) defined by (1.1) be in the class $\mathcal{T}_{\lambda}^{m}(b; a_{1}, b_{1}; q; A, B)$ and let $\Gamma_{n} = |(A - B)b - B\lambda([n]_{q} - 1)| - \lambda([n]_{q} - 1)$.

(a) If $\Gamma_2 \leq 0$, then

$$|c_j| \le \frac{(A-B)|b|}{[1-\lambda+[j]_q\lambda]^m \lambda([j]_q-1)Y_j}.$$
 (2.1)

(b) If $\Gamma_n \geq 0$, then

$$\left|c_{j}\right| \leq \frac{1}{\left[1 - \lambda + \left[j\right]_{q}\lambda\right]^{m}\lambda^{j-1}Y_{j}} \prod_{n=2}^{J} \frac{\left|(A-B)b - \left([n-1]_{q} - 1\right)B\right|}{\left([n]_{q} - 1\right)}$$
 (2.2)

(c) If $\Gamma_k \ge 0$ and $\Gamma_{k+1} \le 0$ for k = 2,3,...,j-2,

$$\left|c_{j}\right| \leq \frac{1}{\left[1 - \lambda + [j]_{q}\lambda\right]^{m} \left([j]_{q} - 1\right)\lambda^{j-1}Y_{j}} \prod_{n=2}^{k+1} \frac{\left|(A - B)b - \left([n-1]_{q} - 1\right)B\right|}{\left([n]_{q} - 1\right)}$$
(2.3)

The bounds in (2.1) and (2.2) are sharp for all admissible $A, B, b \in \mathbb{C}\setminus\{0\}$ and for each j.

Proof. Since $f(z) \in \mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$, the inequality (1.10) gives

$$\left|\mathcal{J}_{\lambda}^{m+1}(a_1,b_1;\ q,z)f-\mathcal{J}_{\lambda}^{m}(a_1,b_1;\ q,z)f\right|$$

$$= \{ [(A-B)b+B] \mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f - B \mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};q,z)f \} w(z).$$
 (2.4)

Equation (2.4) may be written as

$$\sum_{n=2}^{\infty} \left[1 - \lambda + [n]_q \lambda\right]^m \lambda \left([n]_q - 1\right) Y_n c_n z^n$$
(2.5)

$$= \{ (A-B)bz + \sum_{n=2}^{\infty} \left[(A-B)b - B\lambda ([n]_q - 1) \right] \left[1 - \lambda + [n]_q \lambda \right]^m Y_n c_n z^n \} w(z).$$

Or equivalently

$$\sum_{n=2}^{j} \left[1 - \lambda + [n]_{q} \lambda \right]^{m} \lambda ([n]_{q} - 1) Y_{n} c_{n} z^{n} + \sum_{n=j+1}^{\infty} d_{n} z^{n}$$

$$= \left\{ (A - B) b z + \sum_{n=2}^{j-1} \left[(A - B) b - B \lambda ([n]_{q} - 1) \right] \left[1 - \lambda + [n]_{q} \lambda \right]^{m} Y_{n} c_{n} z^{n} \right\} w(z), \quad (2.6)$$

for certain coefficients d_n . Explicitly $d_n = [1 + (k-1)\lambda]^m \lambda(k-1)\Gamma_k a_k - [(A-B)b - B(k-2)\lambda][1 + (k-2)\lambda]^m \Gamma_{k-1} a_{k-1} z^{-1}$.

Since |w(z)| < 1, we have

$$\left| \sum_{n=2}^{j} \left[1 - \lambda + [n]_{q} \lambda \right]^{m} \lambda ([n]_{q} - 1) Y_{n} c_{n} z^{n} + \sum_{n=j+1}^{\infty} d_{n} z^{n} \right|$$

$$\leq \left| (A - B) b z + \sum_{n=2}^{j-1} \left[(A - B) b - B \lambda ([n]_{q} - 1) \right] \left[1 - \lambda + [n]_{q} \lambda \right]^{m} Y_{n} c_{n} z^{n} \right|.$$
(2.7)

Let $z = re^{i\theta}$, r < 1, applying the Parseval's formula (see [5] p.138) on both sides of the above inequality and after simple computation, we get

$$\begin{split} \sum_{n=2}^{J} \left[1 - \lambda + [n]_{q} \lambda \right]^{2m} \lambda^{2} \left([n]_{q} - 1 \right)^{2} Y_{n}^{2} |c_{n}|^{2} r^{2n} + \sum_{n=j+1}^{\infty} |d_{n}|^{2} r^{2n} \\ & \leq (A - B)^{2} |b|^{2} r^{2} + \sum_{n=2}^{j-1} \left| (A - B)b - B\lambda \left([n]_{q} - 1 \right) \right|^{2} \left[1 - \lambda + [n]_{q} \lambda \right]^{2m} Y_{n}^{2} |c_{n}|^{2} r^{2n}. \end{split}$$

Let $r \to 1^-$, then on some simplification we obtain

$$\left[1 - \lambda + [j]_{q} \lambda\right]^{2m} \lambda^{2} ([j]_{q} - 1)^{2} Y_{j}^{2} |c_{j}|^{2} \leq (A - B)^{2} |b|^{2}
+ \sum_{n=2}^{j-1} \left\{ \left| (A - B)b - B\lambda ([n]_{q} - 1) \right|^{2} - \lambda^{2} ([n]_{q} - 1)^{2} \right\} \left[1 - \lambda + [n]_{q} \lambda\right]^{2m} Y_{n}^{2} |c_{n}|^{2} \quad j \geq 2.$$
(2.8)

For j = 2, it follows from (2.8) that

$$|c_{2}| \leq \frac{(A-B)|b|}{\left[1-\lambda+[2]_{q}\lambda\right]^{m}\lambda([2]_{q}-1)Y_{2}}$$

$$=\frac{(A-B)|b|}{[1+q\lambda]^{m}q\lambda Y_{2}}.$$
(2.9)

Since

$$|(A-B)b - B\lambda[n-1]_q - 1| \ge |(A-B)b - B\lambda[n]_q - 1| - |B| \ge [n]_q - 2,$$

if $\Lambda_n \ge 0$ then $\Lambda_{n-1} \ge 0$ for n=2,3,... Again, if $\Lambda_n \le 0$ then $\Lambda_{n+1} \le 0$ for n=2,3,... because

$$\left| (A-B)b - B\lambda[n+1]_q - 1 \right| \le \left| (A-B)b - B\lambda[n]_q - 1 \right| + |B| \ge [n]_q.$$

If $\Lambda_2 \leq 0$, then from the above discussion we can conclude that $\Lambda_n \leq 0$ for all n > 2. It follows from (2.8) that

$$|c_j| \le \frac{(A-B)|b|}{[1-\lambda+[j]_q\lambda]^m \lambda([j]_q-1)Y_j}.$$
 (2.10)

If $\Gamma_{n-1} \ge 0$, then from the above observation, $\Gamma_2, \Gamma_3, ..., \Gamma_{j-2} \ge 0$. From (2.10), we infer that the inequality (2.2) is true for j=2. We establish (2.2), by mathematical induction. Suppose (2.2) is valid for n=2,3,...,(j-1). Then it follows from (2.8) that

$$\begin{aligned} \left[1 - \lambda + [j]_q \lambda\right]^{2m} \lambda^2 ([j]_q - 1)^2 Y_j^2 |c_j|^2 \\ & \leq (A - B)^2 |b|^2 \\ & + \sum_{n=2}^{j-1} \left\{ \left| (A - B)b - B\lambda ([n]_q - 1) \right|^2 \right. \\ & \left. - \lambda^2 ([n]_q - 1)^2 \right\} \left[1 - \lambda + [n]_q \lambda \right]^{2m} Y_n^2 |c_n|^2 \end{aligned}$$

$$\leq (A-B)^{2}|b|^{2} + \sum_{n=2}^{j-1} \left\{ |(A-B)b - B\lambda([n]_{q} - 1)|^{2} - \lambda^{2}([n]_{q} - 1)^{2} \right\} \left[1 - \lambda + [n]_{q}\lambda \right]^{2m} Y_{n}^{2} \\ \times \left\{ \frac{1}{\left[1 - \lambda + [n]_{q}\lambda \right]^{2m} Y_{n}^{2} \{\lambda^{n-1}\}^{2}} \prod_{j=2}^{n} \frac{|(A-B)b - ([k-1]_{q} - 1)B|^{2}}{\left([n]_{q} - 1\right)^{2}} \right\}$$

Thus, we get

$$|c_j| \le \frac{1}{\left[1 - \lambda + [j]_q \lambda\right]^m \lambda^{j-1} Y_j} \prod_{n=2}^j \frac{|(A-B)b - ([n-1]_q - 1)B|}{([n]_q - 1)},$$

which completes the proof of (2.2).

Now if we assume that $\Gamma_n \ge 0$ and $\Gamma_{n+1} \le 0$ for n=2,3,...,j-2. Then $\Gamma_2,\Gamma_3,...,\Gamma_{n-1} \ge 0$ and $\Gamma_{n+2},\Gamma_{n+3},...,\Gamma_{j-2} \le 0$. Then (2.8) gives

$$\begin{split} & \left[1-\lambda+[j]_{q}\lambda\right]^{2m}\lambda^{2}\left([j]_{q}-1\right)^{2}\mathrm{Y}_{j}^{2}|c_{j}|^{2} \\ & \leq (A-B)^{2}|b|^{2}+\sum_{n=2}^{l}\left\{\left|(A-B)b-B\lambda([n]_{q}-1)\right|^{2}-\lambda^{2}\left([n]_{q}-1\right)^{2}\right\}\left[1-\lambda+[n]_{q}\lambda\right]^{2m}\mathrm{Y}_{n}^{2}|c_{n}|^{2} \\ & +\sum_{k=l+1}^{j-1}\left\{\left[(A-B)b-B\lambda([n]_{q}-1)\right]^{2}-\lambda^{2}\left([n]_{q}-1\right)^{2}\right\}\left[1-\lambda+[n]_{q}\lambda\right]^{2m}\mathrm{Y}_{n}^{2}|c_{n}|^{2} \\ & \leq (A-B)^{2}|b|^{2}+\sum_{n=2}^{l}\left[(A-B)b-B\lambda([n]_{q}-1)\right]^{2}\left[1-\lambda+[n]_{q}\lambda\right]^{2m}\mathrm{Y}_{n}^{2}|c_{n}|^{2}. \end{split}$$

On substituting upper estimates for $a_2, a_3, ..., a_l$ obtained above and simplifying, we obtain (2.3). Also, the bounds in (2.1) are sharp for the functions $f_k(z)$ given by

$$\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};\,q,z)f_{k}(z) = \begin{cases} z(1+Bz)^{\frac{(A-B)b}{B\lambda(k-1)}} & \text{if } B \neq 0, \\ z\exp\left(\frac{Ab}{\lambda(k-1)}z^{k-1}\right) & \text{if } B = 0 \end{cases}$$

The bounds in (2.2) are sharp for the functions f(z) given by

$$\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f = \begin{cases} z(1+Bz)^{\frac{(A-B)b}{B}}if \ B \neq 0\\ z \ exp(Abz) & if \ B = 0 \end{cases}.$$

Remark 2.1 Putting $q \to 1^-$, r = 2, s = 1; $a_1 = b_1$, $a_2 = q$ and $\lambda = 1$ in Theorem 2.1, we get the

result due to Attiya [3].

For a choice of the parameters $a_i = q^{\alpha_i}$, $b_j = q^{\beta_j}$, α_i , $\beta_j \in \mathbb{C}$, $\beta_j \neq 0, -1, -2, ...$, (i = 1, ..., r, j = 1, ..., s) and $q \to 1^-$, Theorem 2.1 reduces to

Corollary 2.2 [13] Let the function f(z) defined by (1.1) be in the class $\mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$.

Let
$$\Lambda_n = |(A-B)b - B\lambda(n-1)| - \lambda(n-1)$$
 and also let

$$\Psi_k = \frac{(\alpha_1)_{k-1} \dots (\alpha_q)_{k-1}}{(\beta_1)_{k-1} \dots (\beta_s)_{k-1} (k-1)!}.$$

(a) If
$$\Lambda_2 \leq 0$$
, then
$$|c_j| \leq \frac{(A-B)|b|}{[1+(j-1)\lambda]^m \lambda (j-1)\Psi_j}.$$
 (2.11)

(b) If
$$\Lambda_n \ge 0$$
, then
$$\left| c_j \right| \le \frac{1}{[1 + (j-1)\lambda]^m (j-1)! \, \lambda^{j-1} \Psi_j} \prod_{n=2}^j |(A-B)b - (n-2)B| \tag{2.12}$$

$$|c_j| \le \frac{1}{[1+(j-1)\lambda]^m(k-1)!(j-1)\lambda^{j-1}\Psi_j} \prod_{n=2}^{k+1} |(A-B)b - (n-2)B|$$
 (2.13)

The bounds in (2.11) and (2.12) are sharp for all admissible $A, B, b \in \mathbb{C}\setminus\{0\}$ and for each j.

If we let $\lambda = 1$, r = 2, s = 1, $a_1 = b_1$ and $a_2 = q$, A = 1 and B = -M in Theorem 2.1, we have

Corollary 2.3 [1] Let the function f(z) defined by (1.1) be in the class $\mathcal{H}^m(b; M)$. Let

$$G = \left[\frac{2u(n-1)Re(b)}{(n-1)^2(1-u) - |b|^2(1+u)} \right],$$

$$(for n = 1,3,...,j-1).$$
If $2u(n-1)Re\{b\} > (n-1)^2(1-u) - (n-1)^2(1-u)$

 $|b|^2(1+u)$, then, for j = 2,3,...,G+2

$$|a_j| \le \frac{1}{j^m(j-1)!} \prod_{n=2}^j |(1+u)b + (n-2)u|$$
 (2.14)

and for j > G + 2

$$|a_j| \le \frac{1}{j^m(j-1)(G+1)!} \prod_{n=2}^{G+3} |(1+u)b + (n-2)u|$$

(b) If
$$2u(n-1) Re \{b\} \le (n-1)^2 (1-u) - 1$$

 $|b|^2(1+u)$, then

(c)

(a)

$$|a_j| \le \frac{(1+u)|b|}{(j-1)j^m} \quad j \ge 2.$$
 (2.15)

where u = 1 - 1M (M > -12). The inequalities (2.14) and (2.15) are sharp.

If $\Lambda_k \geq 0$ and $\Gamma_{k+1} \leq 0$ for k = 2,3,...,j-2,

3. A sufficient condition for a function to be in $\mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$

Theorem 3.1 Let the function f(z) defined by (1.1) and let

$$\sum_{n=2}^{\infty} \left[1 - \lambda + [n]_q \lambda \right]^m \left\{ \lambda \left([n]_q - 1 \right) + \left| (A - B)b - B \left([n]_q - 1 \right) \lambda \right| \right\} Y_n |c_n|$$

$$\leq (A - B)|b| \qquad (3.1)$$

holds, then f(z) belongs to $\mathcal{T}_{\lambda}^{m}(b; a_{1}, b_{1}; q; A, B)$.

Proof. Suppose that the inequality holds. Then we have for $z \in \mathcal{U}$

$$\begin{aligned} \left| \mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};\,q,z)f - \mathcal{J}_{\lambda}^{m}(a_{1},b_{1};\,q,z)f \right| - \left| (A-B)b\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};\,q,z)f - B[\mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};\,q,z)f - \mathcal{J}_{\lambda}^{m}(a_{1},b_{1};\,q,z)f] \right| \\ &= \left| \sum_{n=2}^{\infty} \left[1 - \lambda + [n]_{q} \lambda \right]^{m} \lambda ([n]_{q} - 1) Y_{n} c_{n} z^{n} \right| - \left| (A-B)b[z] \right| \\ &+ \sum_{n=2}^{\infty} \left[1 - \lambda + [n]_{q} \lambda \right]^{m} Y_{n} c_{n} z^{n} \right] \\ &- B \sum_{n=2}^{\infty} \left[1 - \lambda + [n]_{q} \lambda \right]^{m} \lambda ([n]_{q} - 1) Y_{n} c_{n} z^{n} \end{aligned}$$

 $\leq \sum_{n=2}^{\infty} \left[1 - \lambda + [n]_q \lambda \right]^m \{ \lambda \left([n]_q - 1 \right) + |(A - B)b - B \left([n]_q - 1 \right) \lambda |\} Y_n |c_n| r^n - (A - B) |b| r.$

Letting $r \to 1^-$, then we have

$$\left| \mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1}; q,z)f - \mathcal{J}_{\lambda}^{m}(a_{1},b_{1}; q,z)f \right| - \left| (A-B)b\mathcal{J}_{\lambda}^{m}(a_{1},b_{1}; q,z)f - B[\mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1}; q,z)f - \mathcal{J}_{\lambda}^{m}(a_{1},b_{1}; q,z)f] \right|$$

$$\leq \sum_{n=2}^{\infty} \left[1 - \lambda + [n]_q \lambda \right]^m \{ \lambda ([n]_q - 1) + |(A - B)b - B([n]_q - 1)\lambda| \} Y_n |c_n| - (A - B)|b|$$

$$\leq 0.$$

Hence it follows that

$$\frac{\left|\frac{\mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};q,z)f}{\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f}-1\right|}{\left|B\left[\frac{\mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};q,z)f}{\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f}-1\right]-(A-B)b\right|} < 1, \quad z \in \mathcal{U}.$$

Letting

$$w(z) = \frac{\frac{\mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};q,z)f}{\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f} - 1}{B[\frac{\mathcal{J}_{\lambda}^{m+1}(a_{1},b_{1};q,z)f}{\mathcal{J}_{\lambda}^{m}(a_{1},b_{1};q,z)f} - 1] - (A - B)b},$$

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence we have

$$\frac{\mathcal{J}_{\lambda}^{m+1}(a_1, b_1; q, z)f}{\mathcal{J}_{\lambda}^{m}(a_1, b_1; q, z)f} = \frac{1 + [B + b(A - B)]w(z)}{1 + Bw(z)}$$

which shows that f(z) belongs to $\mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$.

4. Subordination Results for the Class $\mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$

Definition 4.1 A sequence $\{b_k\}_{k=1}^{\infty}$ of complex numbers is called a subordinating factor sequence

if, whenever f(z) is analytic, univalent and convex in U, we have the subordination given by

$$\sum_{k=1}^{\infty} b_k a_k z^k < f(z) (z \in \mathcal{U}, a_1 = 1).$$
 (4.1)

Lemma 4.1 [14] The sequence $\{b_k\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$Re\left\{1+2\sum_{k=1}^{\infty}b_kz^k\right\} > 0(z\in\mathcal{U}). \tag{4.2}$$

For convenience, we shall henceforth denote

$$\sigma_{k}^{q}(b,\lambda,m,a_{1},b_{1},A,B)$$

$$= \left[1 - \lambda + [n]_{q}\lambda\right]^{m} \{\lambda([n]_{q} - 1) + |(A - B)b|$$

$$-B([n]_{q} - 1)\lambda| \frac{(a_{1};q)_{n-1}(a_{2};q)_{n-1} \dots (a_{r};q)_{n-1}}{(q;q)_{n-1}(b_{1};q)_{n-1} \dots (b_{s};q)_{n-1}}.$$

$$(4.3)$$

Let $\tilde{\mathcal{T}}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$ denote the class of functions $f(z) \in \mathcal{A}$ whose coefficients satisfy the conditions (3.1). We note that $\tilde{\mathcal{T}}_{\lambda}^{m}(b; a_1, b_1; q; A, B) \subseteq \mathcal{T}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$.

Theorem 4.2 Let the function f(z) defined by (1.1) be in the class $\tilde{\mathcal{T}}_{\lambda}^{m}(b; a_1, b_1; q; A, B)$ where $-1 \leq B < A \leq 1$. Also let \mathcal{C} denote the familiar class of functions $f(z) \in \mathcal{A}$ which are also

univalent and convex in *U. Then*

$$\frac{\sigma_2^{q}(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b|+\sigma_2^{q}(b,\lambda,m,a_1,b_1,A,B)]}(f*g)(z) < g(z)(z \in \mathcal{U}; g \in \mathcal{C}), \tag{4.4}$$

$$\Re \left(f(z) \right) > -\frac{(A-B)|b| + \sigma_2^{q}(b, \lambda, m, a_1, b_1, A, B)}{\sigma_2^{q}(b, \lambda, m, a_1, b_1, A, B)} (z \in \mathcal{U}). \tag{4.5}$$

The constant $\frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b|+\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]}$ is the best estimate.

Proof. Let $f(z) \in \widetilde{\mathcal{H}}_{\lambda}^{m}(b; \alpha_{1}, \beta_{1}; A, B)$ and let $g(z) = z + \sum_{k=2}^{\infty} b_{k} z^{k} \in \mathcal{C}$. Then

$$\frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b|+\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]}(f*g)(z)$$

$$= \frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b| + \sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]} (z + \sum_{k=2}^{\infty} a_k b_k z^k).$$

Thus, by Definition 4.1, the assertion of the theorem will hold if the sequence

$$\left\{ \frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b| + \sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]} a_k \right\}_{k=1}^{\infty}$$

is a subordinating factor sequence, with $a_1 = 1$. In view of Lemma 4.1, this will be true if and only if

$$\Re \left\{1 + 2\sum_{k=1}^{\infty} \frac{\sigma_2^{q}(b, \lambda, m, a_1, b_1, A, B)}{2[(A - B)|b| + \sigma_2^{q}(b, \lambda, m, a_1, b_1, A, B)]} a_k z^k\right\} > 0 \quad (z \in \mathcal{U}). \quad (4.6)$$

Now

$$\Re \left\{1 + \frac{\sigma_{2}^{q}(b, \lambda, m, a_{1}, b_{1}, A, B)}{(A - B)|b| + \sigma_{2}^{q}(b, \lambda, m, a_{1}, b_{1}, A, B)} \sum_{k=1}^{\infty} a_{k} z^{k}\right\}$$

$$= \Re \left\{1 + \frac{\sigma_{2}^{q}(b, \lambda, m, a_{1}, b_{1}, A, B)}{(A - B)|b| + \sigma_{2}^{q}(b, \lambda, m, a_{1}, b_{1}, A, B)} a_{1} z\right\}$$

$$+ \frac{1}{(A - B)|b| + \sigma_{2}^{q}(b, \lambda, m, a_{1}, b_{1}, A, B)} \sum_{k=2}^{\infty} \sigma_{2}^{q}(b, \lambda, m, a_{1}, b_{1}, A, B) a_{k} z^{k}$$

$$\geq 1 - \left\{ \left| \frac{\sigma_2^q(b, \lambda, m, a_1, b_1, A, B)}{(A - B)|b| + \sigma_2^q(b, \lambda, m, a_1, b_1, A, B)} \right| r + \right.$$

$$\frac{1}{|(A-B)|b| + \sigma_2^q(b,\lambda,m,a_1,b_1,A,B)|} \sum_{k=2}^{\infty} \sigma_k(b,\lambda,m,\alpha_1,\beta_1,A,B) |a_k| r^k \bigg\}.$$

Since $\sigma_k^q(b, \lambda, m, a_1, b_1, A, B)$ is a real increasing function of $k \ (k \ge 2)$

$$1 - \left\{ \left| \frac{\sigma_{2}^{q}(b,\lambda,m,a_{1},b_{1},A,B)}{(A-B)|b| + \sigma_{2}^{q}(b,\lambda,m,a_{1},b_{1},A,B)} \right| r + \frac{1}{|(A-B)|b| + \sigma_{2}^{q}(b,\lambda,m,a_{1},b_{1},A,B)|} \sum_{k=2}^{\infty} \sigma_{k}(b,\lambda,m,\alpha_{1},\beta_{1},A,B)|a_{k}|r^{k} \right\}$$

$$> 1 - \left\{ \frac{\sigma_2^q(b, \lambda, m, a_1, b_1, A, B)}{(A - B)|b| + \sigma_2^q(b, \lambda, m, a_1, b_1, A, B)} r + \frac{(A - B)|b|}{(A - B)|b| + \sigma_2^q(b, \lambda, m, a_1, b_1, A, B)} r \right\} = 1 - r > 0.$$

Thus (4.6) holds true in \mathcal{U} . This proves the inequality (4.4). The inequality (4.5) follows by taking the convex function $g(z) = \frac{z}{1-z} = z + \sum_{k=2}^{\infty} z^k$ in (4.4). To prove the sharpness of the

constant
$$\frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b|+\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]}$$
, we consider $f_0(z) \in \mathcal{H}^m_{\lambda}(b;\alpha_1,\beta_1;A,B)$ given by

$$f_0(z) = z - \frac{(A-B)|b|}{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)} z^2(-1 \le B < A \le 1).$$

Thus from (4.4), we have

$$\frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b|+\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]}f_0(z) < \frac{z}{1-z}.$$
(4.7)

It can be easily verified that

$$\min \left\{ Re \left(\frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b| + \sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]} f_0(z) \right) \right\} = -\frac{1}{2} (z \in \mathcal{U}),$$

This shows that the constant $\frac{\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)}{2[(A-B)|b|+\sigma_2^q(b,\lambda,m,a_1,b_1,A,B)]}$ is best possible.

Remark 4.1 By specializing the parameters, the above result reduces to various other results obtained by several authors.

References:

[1] M. K. Aouf, H. E. Darwish and A. A. Attiya, On a class of certain analytic functions of complex order, Indian J.

Pure Appl. Math. **32** (2001), no. 10, 1443–1452.

- [2] A. Aral, V. Gupta and R. P. Agarwal, *Applications of q -calculus in operator theory*, Springer, NewYork, 2013.
- [3] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math.Comput. **187** (2007), no. 1, 62–67.
- [4] M. Darus, A new look at q-hypergeometric functions, TWMS J. Appl. Eng. Math. 4 (2014), no. 1, 16–19.
- [5] P. L. Duren, *Univalent functions*, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
- [6] T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser/Springer Basel AG, Basel, 2012.
- [7] G. Gasper and M. Rahman, *Basic hypergeometric series*, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990.
- [8] A. W. Goodman, *Univalent functions. Vol. II*, Mariner Publishing Co., Inc., Tampa, FL, 1983.

- [9] F. H. Jackson, On q —functions and a certain difference operator, Trans. Roy. Soc. Edin., **46** (1908),253–281.
- [10] F. H. Jackson, On *q* –definite integrals, Quarterly J. Pure Appl. Math., **41** (1910),193–203.
- [11] K. R. Karthikeyan, M. Ibrahim and S. Srinivasan, Fractional class of analytic functions defined using q-differential operator, Aust. J. Math. Anal. Appl. **15** (2018), no. 1, Art. 9, 15 pp.
- [12] C. Selvaraj and K. R. Karthikeyan, Differential sandwich theorems for certain subclasses of analytic functions, Math. Commun. **13** (2008), no. 2, 311–319.
- [13] C. Selvaraj and K. R. Karthikeyan, Certain classes of analytic functions of complex order involving a family of generalized differential operators, J. Math. Inequal. 2 (2008), no. 4, 449–458.
- [14] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. **12**(1961), 689–693.